

Plicní arteriální hypertenze

Jan Přeček

6. sjezd České asociace ambulantní kardiologie20. 1. 2023, Clarion hotel Olomouc

ESC/ERS GUIDELINES

2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

Developed by the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS).

Endorsed by the International Society for Heart and Lung Transplantation (ISHLT) and the European Reference Network on rare respiratory diseases (ERN-LUNG).

Authors/Task Force Members: Marc Humbert () (France), Gabor Kovacs (Austria), Marius M. Hoeper (Germany), Roberto Badagliacca (Italy), Rolf M.F. Berger (Netherlands), Margarita Brida (Croatia), Jørn Carlsen (Denmark), Andrew J.S. Coats (United Kingdom), Pilar Escribano-Subias (Spain), Pisana Ferrari (Italy), Diogenes S. Ferreira (Brazil), Hossein Ardeschir Ghofrani (Germany), George Giannakoulas (Greece), David G. Kiely (United Kingdom), Eckhard Mayer (Germany), Gergely Meszaros (Hungary), Blin Nagavci (Germany), Karen M. Olsson (Germany), Joanna Pepke-Zaba (United Kingdom), Jennifer K. Quint (United Kingdom), Göran Rådegran (Sweden), Gerald Simonneau (France), Olivier Sitbon (France), Thomy Tonia (Switzerland), Mark Toshner (United Kingdom), Jean-Luc Vachiery (Belgium), Anton Vonk Noordegraaf (Netherlands), Marion Delcroix ()^{*†} (ERS Chairperson) (Belgium), Stephan Rosenkranz ()^{*†} (ESC Chairperson) (Germany), and ESC/ERS Scientific Document Group

KOMPLEXNÍ

Plicní arteriální hypertenze (PAH)

Dg. algoritmus

Pravostranná katetrizace

Table 12 Route of administration, half-life, dosages, and duration of administration of the recommended test compounds for vasoreactivity testing in pulmonary arterial hypertension

Compound	Route	Half-life	Dosage	Duration
Nitric oxide ¹²⁹	inh	15–30 s	10–20 p.p.m.	5–10 min ^a
lloprost ^{130,131}	inh	30 min	5—10 µg ^ь	10–15 min ^c
Epoprostenol ¹²⁹	i.v.	3 min	2–12 ng/kg/min	10 min ^d

Inh, inhaled; i.v., intravenous.

^aMeasurement as a single step within the dose range.

^bAt mouth piece.

^cMeasurement as a single step, temporize full effect.

^dIncremental increase in 2 ng/kg/min intervals, duration of 10 min at each step.

PAH – akutní vazoreaktivita

	Starting dose	Target dose		
Calcium channel blockers				
Amlodipine	5 mg o.d.	15–30 mg o.d.ª		
Diltiazem	60 mg b.i.d. ^b	120–360 mg b.i.d. ^b		
Felodipine	5 mg o.d.	15–30 mg o.d.ª		

PAH – léčebný algoritmus

Klinické fenotypy PAH – role komorbidit

Lékařská fakulta Univerzity Palackého v Olomouci

I. INTERNÍ KLINIKA

FAKULTNÍ NEMOCNICE OLOMOUC

KARDIOLOGICKÁ

PAH – benefit z časné eskalace léčby

FIGURE 1. Schematic diagram showing the ideal approach to pulmonary arterial hypertension management, which involves regular monitoring and early intervention.

- Častější výskyt akutních příhod a progrese onemocnění vedou k častým hospitalizacím a zvýšenému riziku úmrtnosti
- S každou akutní příhodou může poškození myokardu přispívat k progresivní dysfunkci

Sitbon O et al. Eur Respir Rev 2010 Dec;19(118):272-8

PAH – léčebný algoritmus

Riziková stratifikace pacientů

Table 16 Comprehensive risk assessment in pulmonary arterial hypertension (three-strata model)

Determinants of prognosis (estimated 1-year mortality)	Low risk (<5%)	Intermediate risk (5–20%)	High risk (>20%)
Clinical observations and modifiable varial	bles		
Signs of right HF	Absent	Absent	Present
Progression of symptoms and clinical manifestations	No	Slow	Rapid
Syncope	No	Occasional syncope ^a	Repeated syncope ^b
WHO-FC	- I, II	III	N
6MWD ^c	>440 m	165–440 m	<165 m
CPET	Peak VO ₂ >15 mL/min/kg (>65% pred.) VE/VCO ₂ slope <36	Peak VO ₂ 11–15 mL/min/kg (35–65% pred.) VE/VCO ₂ slope 36–44	Peak VO ₂ <11 mL/min/kg (<35% pred.) VE/VCO ₂ slope >44
Biomarkers: BNP or NT-proBNP ^d	BNP <50 ng/L NT-proBNP <300 ng/L	BNP 50-800 ng/L NT-proBNP 300-1100 ng/L	BNP >800 ng/L NT-proBNP >1100 ng/L
Echocardiography	RA area <18 cm ² TAPSE/sPAP >0.32 mm/mmHg No pericardial effusion	RA area 18–26 cm ² TAPSE/sPAP 0.19–0.32 mm/ mmHg Minimal pericardial effusion	RA area >26 cm ² TAPSE/sPAP <0.19 mm/mmHg Moderate or large pericardial effusion
cMRI ^e	RVEF >54% SVI >40 mL/m ² RVESVI <42 mL/m ²	RVEF 37–54% SVI 26–40 mL/m ² RVESVI 42–54 mL/m ²	$\label{eq:RVEF} \begin{split} & RVEF < 37\% \\ & SVI < 26 \ mL/m^2 \\ & RVESVI > 54 \ mL/m^2 \end{split}$
Haemodynamics	$RAP < 8 mmHg$ $CI \ge 2.5 L/min/m^2$ $SVI > 38 mL/m^2$ $SvO_2 > 65\%$	RAP 8–14 mmHg CI 2.0–2.4 L/min/m ² SVI 31–38 mL/m ² SvO ₂ 60–65%	$\label{eq:RAP} \begin{array}{l} RAP > \!$

Ł

I. INTERNÍ KLINIKA KARDIOLOGICKÁ Fakultní nemocnice olomouc

Riziková stratifikace - změny

Determinants of prognosis (estimated 1-year mortality)	Low risk <5%	Intermediate risk 5–20%	High risk >20%
Biomarkers: BNP or	BNP <50 ng/L	BNP 50– 800 ng/L	BNP > 800 ng/L
NT-proBNP	NT-proBNP <300 ng/L	NT-proBNP 300– 1100 ng/L	NT-proBNP > 1100 ng/L
Echocardiography	RA area <18 cm ² TAPSE/sPAP >0.32 mm/mmHg No pericardial effusion	RA area 18–26 cm ² TAPSE/sPAP 0.19–0.32 mm/mmHg Minimal pericardial effusion	RA area >26 cm ² TAPSE/sPAP <0.19 mm/mmHg Moderate or large pericardial effusion
cMRI	RVEF >54%	RVEF 37–54%	RVEF <37%
	SVI >40 mL/m ²	SVI 26–40 mL/m ²	SVI <26 mL/m ²
	RVESVI <42 mL/m ²	RVESVI 42–54 mL/m ²	RVESVI >54 mL/m ²
Haemodynamics	RAP <8 mmHg	RAP 8–14 mmHg	RAP >14 mmHg
	CI ≥2.5 L/min/m2	CI 2.0–2.4 L/min/m2	Cl <2.0 L/min/m2
	SVI >38 mL/m ²	SVI 31–38 mL/m ²	SVI <31 mL/m ²
	SvO2 >65%	SvO2 60–65%	SvO2 <60%

Vonk-Noordegraaf A et al. JA Am Coll Cardiol 2013; Vol. 62, No. 25, Suppl D; D22–33; Miotti C et al. J Clin Med 2021, 10, 619.

TAPSE/PASP ratio

• significant marker of ventriuloarterial coupling

- index of in vivo RV shortening in the longitudinal axis versus developed force in patients with heart failure
- non-invasive, indirect measurement of RV contractile function and RV-pulmonary arterial (PA) coupling
- validated against the ratio of end-systolic to arterial elastances (Ees/Ea)
- directly compared with pressure–volume loop measures of ventriculoarterial coupling (invasively measured)
- validated as an important clinical and prognostic parameter in patients
 - with heart failure with and without pulmonary hypertension
 - with **combined post- and pre-capillary PH** (even after adjusting for other echocardiographic or hemodynamic prognostic indicators)
- promising echocardiographic parameter derived from routinely measured indices, fully applicable on the daily basis routine
 - variation coefficient for intra and interobserver agreements is about 1%
- Cut-off value:
 - 0.55 mm/mmHg probability of PH
 - 0.32 mm/mmHg low-risk status in patients with PAH
 - 0.19 mm/mmHg high mortality risk in patients with PAH

TAPSE/PASP ratio

- Tello K et al. Int J Cardiol 2018
 - 290 patients with PAH
 - associated with hemodynamics and functional class
 - independently associated with overal mortality (even after adjusting for other echocardiographic or hemodynamic prognostic indicators)

	Overall mortality		
Variables	HR [95% CI]	р	
TAPSE/PASP ratio, mm/mmHg	4.13 [2.02-8.48]	<0.001	

- Tello K et al. Circ Cardiovasc Imaging 2019
 - 52 patients with PAH and CTEPH
 - TAPSE/PASP correlated with Ees/Ea and end-diastolic elastance
 - TAPSE/PASP <0.31 mm/mm Hg
 - significantly worse prognosis
 - discriminated RV-arterial uncoupling (Ees/Ea < 0.805) sensitivity: 87.5%; specificity: 75.9%

10 12 14

KOMPLEXN

KARDIOVASKULÁRNÍ CENTRUM

16

8

ime (vears)

Tello K et al. Int J Cardiol . 2018 Sep 1;266:229-235. Tello K et al. Circ Cardiovasc Imaging. 2019 Sep;12(9):e009047.

Log-rank *p* < 0.001

MR a predikce mortality a klin. zhoršení u PAH

Alabed, S. et al. J Am Coll Cardiol Img. 2021;14(5):931-42.

Pooled results for mortality and clinical worsening are presented in the forest plots and described in the table underneath for various factors. The literature search details and demographic characteristics of the meta-analysis cohort are shown on the left. LVEDVI = left ventricular end-diastolic volume index; LVESVI = left ventricular end-systolic volume index; LVSVI = left ventricular stroke volume index; RVEDVI = right ventricular end-diastolic volume index; RVEF = right ventricular ejection fraction; RVESVI = right ventricular end-systolic volume index.

Alabed S et al. J Am Coll Cardiol Img. 2021;14(5):931-42

Riziková stratifikace ESC/ERS 2022 – simplifikovaná verze pro hodnocení průběhu léčby (4 kategorie)

Determinants of prognosis Low risk Intermediate-low risk Intermediate-high risk **High risk** 1 2 3 Points assigned 4 ESC/ERS 2022 l or ll^a IV WHO-FC ш 6MWD, m >440 320-440 165-319 < 165**BNP** or 50-199 200-800 < 50 >800NT-proBNP,^a ng/L <300 300-649 650-1100 >1100 O

Table 18 Variables used to calculate the simplified four-strata risk-assessment tool

6MWD, 6-minute walking distance; BNP, brain natriuretic peptide; NT-proBNP, N-terminal pro-brain natriuretic peptide; WHO-FC, World Health Organization functional class. Risk is calculated by dividing the sum of all grades by the number of variables and rounding to the next integer. ^aWHO-FC I and II are assigned 1 point as both are associated with good long-term survival.

ESC/ERS Guidelines

At follow-up, the four-strata model (*Table 18*) is recommended as a basic risk-stratification tool, but additional variables should be considered as needed, especially right heart imaging and haemodynamics. At any stage, individual factors such as age, sex, disease type, comorbidities, and kidney function should also be considered.

Humbert M et al. Eur Hear J 2022, DOI: 10.1093/eurheartj/ehac237

Kontrolní vyšetření

	At baseline	3–6 months after changes in therapy	Every 3–6 months in stable patients	In case of clinical worsening
Medical assessment (including WHO-FC)	Class I	Class I	Class I	Class I
6MWT	Class I	Class I	Class I	Class I
Blood test (including NT-proBNP)	Class I	Class I	Class I	Class I
ECG	Class I	Class I	Class I	Class I
Echocardiography or cMRI	Class I	Class I	Class IIb	Class I
ABG or pulse oximetry	Class I	Class I	Class I	Class I
Disease-specific HR-QoL	Class IIb	Class IIb	Class IIb	Class IIb
CPET	Class IIb	Class IIb	Class IIb	Class IIb
RHC	Class I	Class IIa	Class IIb	Class IIa

Humbert M et al. Eur Hear J 2022, DOI: 10.1093/eurheartj/ehac237

PAH - léčba

6.3. Therapy

According to the revised haemodynamic definition, PAH may be diagnosed in patients with mPAP >20 mmHg and PVR >2 WU. Yet, the efficacy of drugs approved for PAH has only been demonstrated in patients with mPAP \geq 25 mmHg and PVR >3 WU (see Supplementary Data, *Table S1*). No data are available for the efficacy of drugs approved for PAH in patients whose mPAP is <25 mmHg and whose PVR is <3 WU. Hence, for such patients, the efficacy of drugs approved for PAH has not been established. The same is true for patients with exercise PH, who, by definition, do not fulfil the diagnostic criteria for PAH. Patients at high risk of developing

PAH, for instance patients with SSc or family members of patients with HPAH, should be referred to a PH centre for individual decision-making.

PAH – iniciální léčba (pacienti bez komorbidit)

Recommendations for the treatment of non-vasoreactive patients with idiopathic, heritable, or drug-associated PAH who present <u>without</u> cardiopulmonary comorbidities (initial therapy)

Recommendations				Level	
For initial therapy					
In patients with IPAH/HPAH/DPAH who present at high risk of death, initial combination therapy with a PDE5i, an ERA, and i.v./s.c. prostacyclin analogues should be considered				с	
PICO 1: Should initial oral double-combination therapy vs. monotherapy be used in symptomatic patients with PAH?					
	GRADE				
Recommendations	Quality of evidence	-	Class	Level	

In patients with IPAH/HPAH/DPAH who present at low or intermediate risk of death, initial combination therapy with a PDE5i and an ERA is recommended

Recommendations	Class	Level
Initial combination therapy with ambrisentan and tadalafil is recommended	- I	В
Initial combination therapy with macitentan and tadalafil is recommended	- I	В
Initial combination therapy with other ERAs and PDE5is should be considered	lla	В
Initial combination therapy with macitentan and tadalafil and selexipag is not recommended	ш	В

KOMPLEXNÍ KARDIOVASKULÁRNÍ CENTRUM

Lékařská fakulta Univerzity Palackého v Olomouci

ESC

ERS

PAH – eskalace léčby (pacienti bez komorbidit)

Recommendations	Class	Level
During follow-up		
In patients with IPAH/HPAH/DPAH who present at intermediate-low risk of death	lla	В
while receiving ERA/PDE5i therapy, addition of selexipag should be considered	Па	D
In patients with IPAH/HPAH/DPAH who present at intermediate-high or high risk		
of death while receiving ERA/PDE5i therapy, addition of i.v./s.c. prostacyclin	lla	С
analogues and referral for lung transplantation evaluation should be considered		
In patients with IPAH/HPAH/DPAH who present at intermediate-low risk of death		
while receiving ERA/PDE5i therapy, switching from PDE5i to riociguat may be	llb	В
considered		

Centrum pro diagnostiku a léčbu PH

DĚKUJEME ZA POZORNOST

FAKULTNÍ NEMOCNICE OLOMOUC

